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I SCHOTTKY BARRIERS WORK

The Schottky barriers work concentrated this year on transport in the depletion region.

Transport includes both the depletion region and the quasineutral region, and phenomena caus-

ing departures from ideal electrical behavior occurs in both. In last year's report, however, it

was shown that the depletion region can and should be treated separately from the quasineutral

region; the two can be coupled together by effective boundary conditions at the interface.

What is required in the depletion region are the scattering probabilities (or equivalently the

transmission and reflection coefficients) for an incident electron entering the depletion region.

Last year's work centered on numerical solutions of the Boltzmann transport equations in the

quasineutral region for a highly non-Boltzmann, spatially varying electron distribution subject

to boundary conditions at the interface connecting the quasineutral and depletion regions. This

year's work has focused on depletion region, to obtain the scattering rates of electrons travers-

ing it. At this time last year, it was believed that scattering from a collection of random

impurities (in contradistinction to a jellium of charge which gives rise to the usual one-

dimensional quadratic potential barrier) would be very large (Boudville and McGill, 1985) and

would require a fully three-dimensional solution the time-dependent Schr6dinger equation for

an (effective mass) electron moving through the depletion region. A careful study of the effect

of a distribution of random impurities is discussed in the following pages. The barrier result-

ing from a distribution of random impurities was found-somewhat surprisingly-to differ

remarkably little from that of a jellium. The difference between these potentials acts as a weak

perturbation to electrons traversing the barrier.

This result greatly simplifies the calculation of scattering in the depletion region, because

now coulomb scattering can possibly be neglected, or be treated in perturbation theory on the

same footing as the other scattering mechanisms (e.g., intervalley scattering and optical phonon

scattering). Electron scattering is dominated by a smooth one-dimensional potential, which

includes the parabolic potential of jellium, the l/z potential from image-force lowering, and

possibly another short-range potential from metal-induced gap states or interfacial states.



We can exploit the smallness of the perturbation in the following way. The scattering rate

w is given by Fermi's golden rule in terms of the T matrix (Schiff, 1968):

2 2
-W p(p )I 8 IT I () 1

where p(3) is the density of outgoing states and the T matrix

I 3T I ci= fu *(r)Vtr04,(r)d r

represents the transmission amplitude coupling a free electron state up to a scattered outgoing

state 4,. (4 is a solution to the full Hamiltonian, including the potential V.)

By expressing the scattering potential as a sum of two terms V1 and VP, where V, is the

large one-dimensional potential and Vp is the small perturbation, it turns out to be possible to

express the T matrix as a sum of a part that arises from V, alone and a correction term (Schiff,

1968). The T matrix is given by

10tTtt) = QI0TIC)l + fl Vp(1 qO~d3r

zi 8T 1 Nx)l + f4' lpM"Vp(-jM- d r

In the approximate expression, the second term contains a matrix element of VP between states

distorted by the V1. This approximation consists in replacing in the second term the true scat-

tered state by one distorted only by V1. Because Vp is small, the approximation should be

quite good, essentially exact for our purposes. Because V, is only one-dimensional, it is tract-

able to obtain the T matrix exactly for V1, the resulting wave functions 4 can be used to obtain

the second terms in the above expression and the total scattering rate can be evaluated.

To this end, we have developed a code that solves numerically the wave functions and T

matrix for effective mass electrons in an arbitrary one-dimensional potential. There are some

difficulties associated with numerical solutions, because the wave functions have a high kinetic

energy in some regions that make the wave function oscillate rapidly. In tunneling regions, the

wave functions are growing or decaying exponentially and the Schr6dinger equation for those

regions is of the stiff type. To obviate this difficulty, we divide space into three regions, the

left side for which energy is greater than the potential, middle for which energy is less than the
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potential and right for which energy is again greater. (For electrons with positive kinetic

energy everywhere, there is no middle region.) With two linearly independent solutions in all

three regions, a solution valid everywhere is obtained by matching the solution first at one

turning point, then at the other. At the far edge of the left and right sides, the potential is

assumed constant so that xV(z) = exp (±ikz). For the propagating regions, the wave function is

recast as amplitude and phase,

V(z) = R(z) exp [±io(z)]

and the Schr6dinger equation becomes

R"(z) = [Vl(z) - EIR + E/R 3

ER= ER 2

In the tunneling regions, W is recast reflect its exponentially varying behavior:

, I(z) = exp [ (z)]

and the Schrbdinger equation becomes:

0,(Z) = --4,(z)2 + V(z) - E

The two linearly independent solutions can be obtained by starting with any different set of ini-

tial conditions. In practice, the equation is integrated from the left to the right with one set of

initial conditions and the right to the left with another, this avoids the problem of solving stiff

equations. [It is also possible to solve the Schr6dinger equation in a WKB approximation;

however, for arbitrary potentials it is necessary to solve the equations numerically anyway, and

the WKB may not be accurate near the surface where the potential varies rapidly: it is there

that the image force lowering potential the MIGS potential (or whatever potential is responsible

for pinning the Schottky barriers) are present.)

It is well known that electrons traversing the barrier can tunnel with kinetic energy less

than the barrier height (the majority of current is tunneling current is moderately and heavily

doped devices), and reflect off the barrier even with positive kinetic energy [see, for example,

Landau and Liftshitz Section 501. When calculating this effect in Schottky barriers, it has been
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customary to approximate the potential barrier's shape either by a triangle or, for reflection

over the top of the barrier, by a parabola. Our program permits us to calculate numerically the

true reflection coefficient; it is found to differ significantly from the model potentials. Figure 1

compares the reflection for a potential obtained by a jellium with an image force superimposed

to that with parabolic potential whose curvature matches the former potential. These

differences are important when a quantitative comparison with experiment is desired. In cases

when the band structure deviates significantly from effective mass behavior (this is especially

important for tunneling electrons), one can easily include this effect using a two-band model or

approximately by permitting the mass to be position-dependent.
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FIGURE 1 REFLECTION PROBABILITY OF AN ELECTRON SCATTERED

BY A SCHOTTKY BARRIER

In summary, dcvelopment of the tools required for a quantitative study is proceeding on

schcdule. Within the next few months, we expect to be able to assemble the pieces to make

careful studies of at least some aspects of transport through a Schottky barriers. Eventually it

is expected that the Schottky barriers work also will evolve into an effective modeling tool for

the study of junctions and high-speed electronics devices.
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The next section presents a draft of a paper in preparation on the electrostatic potential

from dopants in the depletion region. As mentioned previously, the resulting barrier is shown

to be remarkably similar to the quadratic potential of a jellium, as is usually assumed. The

difference between these potentials acts as a perturbation to electrons traversing the barrier; it

is shown to be small and the scattering weak.
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H EFFECT OF DISCRETE DOPANTS IN SCHOTTKY BARRIERS

Traditionally the barrier in Schottky barriers and heterojunctions is modeled by a one-

dimensional quadratic potential, as would obtain from jellium of charge in the depletion region.

Fluctuations in the potential act as a perturbation to electrons traversing the barrier; particularly

important are the fluctuations in the plane normal to the barrier.

At first glance it might seem that the difference in electrostatic potential from a random

distribution of ionized dopants and a jellium is large and that it would strongly scatter electrons

traversing the depletion region. Boudville and McGill (1985) calculated transport using a sim-

ple model for the coulomb potential and found the effect to be large. This section presents a

more complete study of this perturbation. We do so with an approximate potential and later

show the results of a more complete Madelung calculation using a collection of 100 randomly

distributed dopants.

To make an approximate perturbation to the true potential, consider a single sphere of

radius r, and volume I/Nd, where Nd is the dopant density. The charge density inside the

sphere is made out of a point charge at the center, compensated by uniform background of

density Nd. The potential from all dopants is obtained from a superposition of these sphere

potentials; this deviates from the true perturbation because the charge density is doubly counted

in regions of overlapping spheres and not counted in void regions. The net charge of both the

true and approximate perturbations is zero. (There is an additional approximation of the same

order, that the potential from the superposition of charge densities is taken to be equal to the

superpxosition of potentials from the densities separately-a correction comes from the regions

where the densities overlap.) This approximation essentially the same as thc atomic spheres

approximation in electronic structure calculations. For close packed lattices, it is an excellent

one, introducing errors of few percent. For a random distribution of dopants, the approxima-

tion should still be reasonable. The potential for a single sphere is, in atomic Rydberg units:

0(r) = 2 - ()
r r.
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for r < r, and zero otherwise. (The potential must also be reduced by the dielectric constant;

this reduction will be implicit in all expressions for the potential presented in this paper.)

T,," Average perturbation,

= Ndf spher d3ro(r) = - = - [4 Nd 1 (2)

increases as Nd much as the image-force correction, varying as NJ' 4 . This approximate 0 is

independent of the distribution of dopants. Its magnitude is small and suggests that the pertur-

bation is weak. For example, for Nd = 8 X 1018 cm- 3 and e = 10, p = 15 meV, barely observ-

able even by the best IV measurements (appearing a correction to the barrier height) and small

compared to the image-force lowering potential.

Now consider scattering by this potential when dopants are ordered on a lattice. For any

lattice it is of course possible to obtain the potential by Ewald summation, but our approximate

potential should be a quite adequate. When there is a lattice, the perturbation is most informa-

tively expressed as a Fourier series, since the Fourier components are the "oscillator

strengths," a measuring of the coupling strength of one state to another, and thus the scattering

rate between states. Components of the approximate perturbation are O(G) with

,0?+ k) = NdYX (G) exp id . (3)
1i d

[iere R and d are real- and reciprocal-space lattice vectors, respectively, and $(q) is the

Fourier transform of O(r),

3 10Nd3(q) = --- x -- (qr,) + 3qrcos(qr,) - 3sin(qr,)I (4)
5r, (qrX)

Function Nd$(q) falls smoothly to zero from its maximum value of 3/5r, at q = 0, with a half-

width at qr, = 5. Again, the strength of the perturbation is small (being strongest at q = 0),

although in the highly doped case not negligible in comparison to kT. The half-width qr, Z 5

is a measure of the maximum of change in wave vector q an electron will suffer when it
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scatters. For example, in the case m * = 0.1 m, Nd = 8 X 1018 cm- 3 and r, = 10, the "oscilla-

tor strength" is 15 meV at q = 0 and h2(5/R)2/2m * 35 meV, so that scattering events are lim-

ited to a change in energy of approximately 35 meV.

In the case of a random distribution of dopants, the same gross behavior should be found

as before; in particular, according to the approximations discussed above, the average perturba-

tion * is independent of dopant distribution. One might expect that the random distribution

will enhance fluctuations, because two or more dopants may cluster together and combine to

form a local potential well that strongly influences scattering. As a check of the simple model

potential described above, and also to study the effect of randomness, a "sample" depletion

region was made out of 100 randomly distributed dopants. The dopants were placed randomly

in the bottom half of a supercell of width w and length 2L; the top half contained no dopants

and thus constitut%.d a neutral region. Periodic boundary conditions were imposed so that the

sur-,rcell repeated itself throughout space. The electrostatic potential from this distribution was

obtained by Ewald summation, tabulated on a mesh of 50 x 50 x 50 points. A dopant density

Nd = (100 au) - 3 =8 X 1018 cm- 3 and a length L = 332 au was chosen, making a barrier height

of 1.39 Ryd and a width of w = 548 au. (For F = 12, this corresponds to about 1.5 eV.)

In the illustrations shown, the z axis is normal to the depletion region. Figure 2 shows

contour plots in the yz plane for three different averages of the potential in x. In Figure 2(a),

the contours are shown for the 25th plane x, in Figure 2(b), the contours are averaged in x

between the 21st and 30th plane, and in Figure 2(c), the contours are averaged in all 50 planes

of x. As expected, the potential increases approximately parabolically in the depletion region

(between z = 0 and z = L), and the fluctuations die down as more planes are averaged. Figure

2(a) is not very meaningful because electrons of wave vector k, will be smeared out in x with

a wavelength 2n/k,. The 10 atomic layers of Figure 2(b) amount to about 50 A, which

corresponds to a transverse kinetic energy of 15 meV for m*/m = 0.1. Figure 2(c) is hardly

distinguishable from a parabolic barrier and the barrier height is very close to the value of 1.39

Ryd that a jellium would have.

Figure 3 shows the deviation from a jellium, averaged in 10 and 50 planes in x. The 10-

plane average is seen to be about three times stronger than the 50-plane average. Figure 3(c)

shows the deviation in potential averaged in both x and y. It is seen to rise smoothly from

approximately zero near the edge of the depletion region. The average potential in the deple-

tion region can visually be seen to be close to 10 mRy the approximate potential estimates.

Figure 4 shows the Fourier transform of the potential in the xy plane, for z in at the edge of

8
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the depletion region and in the center. The Fourier transform $(qJ dies out very rapidly away

from q, = 0, indeed too rapidly to be resolved on the discrete mesh used. This rapid decay is

perhaps most easily interpreted from the point of view of the model potential. Taking its

Fourier transform over a random distribution of dopants,

Nd'd 3 re' O(-I+V) = Ndo (q) Y, e "  , (5)

the sum over a distribution of phases i. now washes out all of the Fourier components of

this approximate perturbation except for q = 0.

Thus, it appears that a random distribution of dopants scatters even more weakly than an

ordered lattice. The potential in either case appears to electrons transversing the depletion

region to be remarkably like a simple quadratic potential. The key to this perhaps surprising

result lies in the long range of the coulomb potential: a superposition of potentials falling off as

11



1/r combine to form a very smooth potential. (The singularity in a lhr behavior at short range

is not significant, because it is only fI1/r)d3r over some volume characteristic of the size of an

electron wavelength that matters.) No explicit calculations of scattering through the depletion

region were carried out here, although this is rather easy to do. It is clear from the discussion,

however, that the net scattering from these dopants are quite small (especially in the more phy-

sically significant random case), particularly when averaged over a distribution of electrons.

Such a conclusion is the opposite of the conclusion Boudville and McGill (1985) drew. He

did carry out transport calculations, but used a crude potential in which only a single dopant

was present, and it is probably in the differing treatment of the potential that our conclusions

differ.

12



III AB INITIO ELECTRONIC STRUCTURE WORK

Most properties of interest in the solid are governed by the behavior of the electrons, and

these properties can (in principle) be calculated if the underlying Schr6dinger equation (or the

relativistic extensions to it) could be solved. In particular, the heat of formation of metal ada-

toms on the surface of semiconductors, the interfacial dipole that pins most Schottky barriers,

and of course the energy bands are the kinds of quantities of particular relevance to Schottky
barriers. The greatest portion of our efforts in the past year have becii devoted towards

development of an efficient method for making such electronic structure calculations, one that

is sufficiently fast that it can be applied to large systems (by ab initio standards) containing

several dozens of atoms.

While it is nearly impossible to solve that equation exactly for a real system, the local-

density approximation to it has been found to yield remarkably good results under a wide
variety of circumstances. Hohenberg and Kohn proved long ago that the Schrodinger equation

is a functional only of the electron density; the functional, however, is unknown. The local-

density approximation is a simplification of the unknown density functional, and it is possible

(although difficult) to make systematic corrections to it. It is ab initio, in the sense that no

adjustable or empirical parameters enter into the theory. Extensive experience in a truly

remarkable range of applications has generated a high degree of confidence in the LDA, and it

is widely believed that the it is sufficiently accurate to predict a broad range of properties, par-

ticularly mechanical properties. It can be equally well applied to any element in the periodic

table and to any arbitrarily complicated system, barring formidable difficulties in accurately

obtaining solutions to the LDA for large systems.

Its greatest drawback is that, at least as traditionally applied, it is quite complicated. First

a basis set must be chosen in which matrix elements of the Hamiltonian can be calculated.

Then the eigenvalue problem must be solved to generate a sum of one-electron energies and a

charge density; next, Poisson's equation must be solved to evaluate the Hartree potential and

the electrostatic energy. Finally, the total energy is obtained from the eigenvalue sum, plus a

double counting correction in the Hartree potential. Ab initio methods, as least in their tradi-

tional application, additionally require self-consistency in the potential, i.e., the potential as

13



calculated from the eigenstates of the Hamiltonian must be identical to the potential that gen-

erated the Hamiltonian in the first place. Unt -- ,.cently as last year, the available computa-

tional techniques were still regarded as far too cumbersome to calculate properties of anything

but very small systems, e.g., systems with 20 atoms or less. The bulk of our effort this year

has gone into development of an efficient method that solve the local density equations far

more efficiently than previously. This opens many doors that were previously closed to ab ini-

tio calculations; in particular, it should be possible to make ab initio studies of the metal-

semiconductor interface.

An accurate solution of the local density-functional is a complex and computationally

intensive task. This has until now been particularly so with techniques that attempt to solve

the local-density equations with essentially no approximations (the APW, LAPW, and pseudo-

potential methods). Calculations using smaller, more efficient basis sets, in particular the linear

muffin tin orbitals (LMTO) method, traditionally make simplifying approximations to the

potential. The LMTO method is far more efficient than its sister methods, but the approxima-

tions to the potential render it suitable only in conditions of high symmetry.

The bulk of our efforts this year have been spent in collaboration with Dr. Methfessel at

the Max Planck Institut fir Festkorperforschung in Stuttgart, to develop a new LMTO method

that removes the approximations to the potential. Because the method is only now being com-

pleted, very few results are available. However, the early results are very promising. The

LMTO method, without any shape approximations to the potential, and with an enlargement

over the conventional basis can be as accurate as the computationally intensive methods (Meth-

fessel, 1988; Methfessel and van Schilfgaarde, in preparation). Silicon has been used as a test-

ing ground; it makes for a particularly stringent test for the LMTO method because of its open

tetrahedral structure (the LMTO method prefers close-packed structures). Table I attests to the

remarkable precision of both density-functional theory and this new LMTO method.

This basis set of 22 orbitals/atom is sufficient to solve the local-density equations to an

absolute precision of about I mRy. Comparable accuracy using the pseudopotential method

requires about 1000 plane waves per atom (similarly for the LAPW method). Because the

computation time for a given calculation of the energy eigenvalues increases as the third power

of the number of orbitals in the system, it is obvious that this method is orders of magnitude

faster than the pseudopotential method for comparable accuracy. The reason why the LMTO

method is so efficient is that its orbitals are tailored to the potential of the system, and so very

rapid convergence is obtained.

14



Table 1

PROPERTIES OF SILICON CALCULATED
SELF-CONSISTENTLY FROM 22-ORBITAL BASE,

FULL POTENTIAL

Data from Methfessel (in preparation)

Parameter Experiment Theory
Lattice constant (a.u.) 10.26 10.23
Cohesive energy (eV)* 4.8 5.23
Bulk modulus (Mbar) 0.98 0.987
cl - c12 (Mbar) 1.02 1.03

c44 (Mbar) 0.80 0.83
Phonons:

TO(F) (THz) 15.53 15.52
Kxyz (eV/A) -35.1 39.1
TO(X) (THz) 13.90 13.75
LAO(X) (THz) 12.32 11.82
TA(X) (THz) 4.49 4.50

Griineisen parameters:
TO(F) 0.98
TO(X) 1.5 1.51
LAO(X) 0.91 !.03
TA(X) 1.4 1.42

*This is essentially the result of local-density theory, and
the error is almost entire owing to failure of the local
density in the free atom, as opposed to the solid.

tThere is a large uncertainty in the measurement of this
quantity (Manuel Cardona, private communication).

LMTO calculations have been performed on large systems, including the NiSi 2-Si inter-

face, using nine interfacial layers comprising 80 atoms (Das et al., submitted; Das et al., in

press) and one on a 216-atom silicon cluster thought to resemble amorphous silicon. This

demonstrates the feasibility of applying the LMTO method to large systems; our present task is

to do the same with the accurate, full-potential version of the LMTO method.
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Another theoretical development important to ab initio treatment of large systems comes

in new approaches to the density-functional. Self-consistency can be a real obstacle in conven-

tional applications, first because it is slow, and secondly because it is hard to reach, owing to

the many more degrees of freedom. A recent development by Car and Parrinello unites

density-functional theory and molecular dynamics, and self-consistency in the electronic struc-

ture is achieved simultaneously with the motion of the nuclei (Car and Parrinello, 1985). This

has been successfully applied to a (001) twist boundary in germanium, using the pseudopoten-

tial method a local approximation to the exact LDA pseudopotential (Payne, Bristowe, and

Joannopoulos, 1985).

Another recently developed technique (Harris, 1985; Foulkes, 1987) is even simpler than

the above mentioned Car and Parrinello method, and more efficient for the LMTO method.

These techniques are derivatives of a method originally published by Harris (1985), and

independently and more completely by Foulkes (1987). The essential point here is to exploit

the variational property of the Hamiltonian, because of which errors in the total energy are

second order in the difference between the guessed input potential and the self-consistent

potential. Rather than carrying calculations to self-consistency, one attempts to construct an

input potential sufficiently close the the self-consistent one as to render unnecessary any steps

to self-consistency. Another key in this technique is that the density-functional can be written

in another form so as to require only a guessed input potential and the output band structure

energy.

The Hohenberg-Kohn density functional at a density n is

E[n] = Tin] + Eiante[nl + Exc[n] + JnVe.[n] ,

where E1I,,,[n ] is the electrostatic energy 1/2f n(r) n(')/I r - r'I d3rd3r of the electrons, inVe,
is the energy of the electrons interacting with the nuclei and Exctn] is the exchange-correlation

energy.

The kinetic energy T is not directly calculable, but it can be obtained by solving the

Schrbinger equation for its eigenstates Wi and eigenvalues ei:

(T + Vin) ki = CAi
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where T = - l/2V 2 and via is a guessed input potential. Solution of the one-electron equa-

tions for 4fi yields an output charge density

nout = V.It7Ii ,

where L is the sum over occupied orbitals. Were vi, the self-consistent potential, nu t would

be the self-consistent density n0 as well, and vim would then be

Ven~)[n] " d3r' + jx~c[no],vi. = Ve j+fnn),(r)[no] I r - rl ' +gJo

but (and this is the central point of this approach) vin need not be calculated from any density

(Foulkes, 1984).* Because of the variational principle, any guessed input potential incurs errors

of order (nout - no)2. Solution of the above equations yields an expression for the kinetic

energy:

T[nout]= f wi* Til/i = j E- f vinnout
i i

Making a functional Taylor series in T,

T[nin] = T[nout] + f (nin - no.t)(ST/8nmn) + O(nin - no,)2

and using 8T/8nin =-Vin + constant, Foulkes (1987) obtained a new expression for the total

energy

E[nm,, vi] = jr + J (Ven-vin)nin

i

+ Euartjre[njnl + Exc[nin] + O(n.t - nn)2 + O(nut -n0)
2

This last expression differs from the self-consistent one by errors of second order in the den-

sity. It is exactly equivalent to the density-functional as originally formulated, but is amenable

to approximation, especially with respect to the LMTO method. In particular, the LMTO

*The idea that the input potential v need not be derived from an input density, also due to Foulkes, is
recent and is as yet unpublished.
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method considerably simplifies if it is sufficient to construct a starting potential from a super-

position of spherical atom-centered potentials. M. Methfessel (in preparation) has constructed

a test potential in silicon and found good agreement with the fully self-consistent results.

Importantly, the same test potential can be put in different structures (e.g., beta-tin, diamond,

simple cubic), so it is transferable to new environments. Self-consistency is thus obviated.

This method is in practice essentially as efficient than the semiempirical tight-binding method,

but has the full support and precision of density-functional theory. Indeed it very strongly

resembles the tight-binding method since essentially all that enters are the sum of one-electron

energies. One of the greatest achievements of the Harris functional is to make a formal

justification of most of the ansatz used implicitly in semiempirical tight-binding methods. The

method outlined here is far more efficient than the Car-Parrinello method and is well suited for

large systems.

A related approach is to make a guessed potential out of a superposition of free-atomic

charge densities. This is more complicated to implement since the potential is no longer a

superposition of spherical potentials, but the results seem about as good (Polatoglou and Meth-

fessel, 1988) except for very ionic systems such as NaCI.
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IV SUMMARY AND FUTURE WORK

One step in the current suite of LMTO programs involves a technique that solves

Poisson's equation and the exchange-correlation potential and energy in the interstitial (Meth-

fessel, 1988; Methfessel and van Schilfgaarde, in preparation). The idea is to fit the density as

evaluated at the surfaces of the spheres to a linear combination of spherical Hankel functions;

since Hankel functions are eigenfunctions of the Poisson equation, the Hartree potential is trivi-

ally obtained as a linear combination of Hankel functions once the fit to the density is known.

While ingenious, the method as originally designed was not suitable for large systems because

of the method used to fit the density itself. However, we have recently shown (Methfessel and

van Schilfgaarde, in preparation) that procedure is mathematically equivalent to a generalization

of Andersen's tight-binding transformation (Andersen, 1985), and that the procedure can be

made far more efficient than previously. In particular, it is possible to solve Poisson's equation

in real space; the method is equally well suited to molecules. It was principally in this step

that the method as originally implemented was not suitable for large systems; this difficulty is

being removed with the current work.

A number of improvements need be made to make it fully operational, for example, the

full-potential version of the code is as yet neither relativistic nor spin polarized. Without the

atomic spheres approximation (in which the potential is constructed out of large overlapping

spheres), semicore states are a greater problem than previously and probably a two-panel facil-

ity will be required. These are a number of details that need to be filled out for the method to

be generally applicable to any system. We believe that this new method shows a great deal of

promise and will find wide application in the years to come. Because it is both very accurate

and very fast we believe it will ultimately displace all other present-day ab initio techniques for

calculating electronic structure as the method of choice. For example, it should be possible to

study the metal-semiconductor interface, and the role of impurities there and interface states

there. With a Cray II, it is possible for the method to perform calculations on several hundreds

of atoms.
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